Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646937

RESUMO

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Monócitos , Streptococcus pneumoniae , Animais , Feminino , Humanos , Camundongos , Apolipoproteína E3/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/mortalidade , Sepse/microbiologia , Sepse/metabolismo , Streptococcus pneumoniae/imunologia , Células THP-1
2.
J Biol Chem ; 299(6): 104760, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119853

RESUMO

Pneumococcus is the main cause of bacterial pneumonia. Pneumococcal infection has been shown to cause elastase, an intracellular host defense factor, to leak from neutrophils. However, when neutrophil elastase (NE) leaks extracellularly, it can degrade host cell surface proteins such as epidermal growth factor receptor (EGFR) and potentially disrupt the alveolar epithelial barrier. In this study, we hypothesized that NE degrades the extracellular domain (ECD) of EGFR in alveolar epithelial cells and inhibits alveolar epithelial repair. Using SDS-PAGE, we showed that NE degraded the recombinant EGFR ECD and its ligand epidermal growth factor, and that the degradation of these proteins was counteracted by NE inhibitors. Furthermore, we confirmed the degradation by NE of EGFR expressed in alveolar epithelial cells in vitro. We showed that intracellular uptake of epidermal growth factor and EGFR signaling was downregulated in alveolar epithelial cells exposed to NE and found that cell proliferation was inhibited in these cells These negative effects of NE on cell proliferation were abolished by NE inhibitors. Finally, we confirmed the degradation of EGFR by NE in vivo. Fragments of EGFR ECD were detected in bronchoalveolar lavage fluid from pneumococcal pneumonia mice, and the percentage of cells positive for a cell proliferation marker Ki67 in lung tissue was reduced. In contrast, administration of an NE inhibitor decreased EGFR fragments in bronchoalveolar lavage fluid and increased the percentage of Ki67-positive cells. These findings suggest that degradation of EGFR by NE could inhibit the repair of alveolar epithelium and cause severe pneumonia.


Assuntos
Receptores ErbB , Elastase de Leucócito , Pneumonia Pneumocócica , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígeno Ki-67/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo
3.
Cell Rep ; 42(2): 112054, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724074

RESUMO

Streptococcus pneumoniae is a pathogen of global morbidity and mortality. Pneumococcal pneumonia can lead to systemic infections associated with high rates of mortality. We find that, upon pneumococcal infection, pulmonary Treg cells are activated and have upregulated TNFR2 expression. TNFR2-deficient mice have compromised Treg cell responses and highly activated IL-17A-producing γδ T cell (γδT17) responses, resulting in significantly enhanced neutrophil infiltration, tissue damage, and rapid development of bacteremia, mirroring responses in Treg cell-depleted mice. Deletion of total Treg cells predominantly activate IFNγ-T cell responses, whereas adoptive transfer of TNFR2+ Treg cells specifically suppress the γδT17 response, suggesting a targeted control of γδT17 activation by TNFR2+ Treg cells. Blocking IL-17A at early stage of infection significantly reduces bacterial blood dissemination and improves survival in TNFR2-deficient mice. Our results demonstrate that TNFR2 is critical for Treg cell-mediated regulation of pulmonary γδT17-neutrophil axis, with impaired TNFR2+ Treg cell responses increasing susceptibility to disease.


Assuntos
Bacteriemia , Pneumonia Pneumocócica , Camundongos , Animais , Pneumonia Pneumocócica/metabolismo , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
4.
Microbiol Spectr ; 10(2): e0204921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35297653

RESUMO

Streptococcus pneumoniae is a leading bacterial cause of a wide range of infections, and pneumococcal pneumosepsis causes high mortality in hosts infected with antibiotic-resistant strains and those who cannot resolve ongoing inflammation. The factors which influence the development and outcome of pneumosepsis are currently unclear. IL-6 is critical for maintaining immune homeostasis, and we determined that this cytokine is also essential for resisting pneumosepsis, as it inhibits macrophage pyroptosis and pyroptosis-related inflammation injury in the lung. IL-6 affected infection outcomes in mice and exerted a protective role, primarily via macrophages. We further found that IL-6 deficiency led to increased lung macrophage death and aggravated lung inflammation, and that exogenous administration of IL-6 protein could decrease macrophage death and alleviate lung tissue inflammation. IL-6 also protected Streptococcus pneumoniae-induced lung macrophage death and lung inflammation injury by inhibiting gasdermin E (GSDME)- and gasdermin D (GSDMD)-mediated pyroptosis. Together, these data reveal a novel mechanism for the development of pneumosepsis and the critical protective role of IL-6. These findings may assist in the early identification and treatment of pneumococcal pneumosepsis. IMPORTANCE Pneumococcal pneumonia has been a significant cause of morbidity and mortality throughout human history. Failing to control pneumococcal pneumonia and resolve ongoing inflammation in a host can cause sepsis, namely pneumococcal pneumosepsis, and death ensues. Few theories have suggested an optimally therapeutic option for this infectious disease. The interleukin-6 (IL-6, a cytokine featuring pleiotropic activity) theory, proposed here, implies that IL-6 acts as a protector against pneumococcal pneumosepsis. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting a caspase-3-GSDME-mediated switch from apoptosis to pyroptosis and inhibiting caspase-1-GSDMD-mediated classic pyroptosis during pneumococcal pneumosepsis. Thus, IL-6 is an important determinant for controlling bacterial invasion and a homeostatic coordinator of pneumococcal pneumosepsis. This study clarifies a novel mechanism of occurrence and development of pneumonia and secondary sepsis following a Streptococcus pneumoniae infection. It is important for the early identification and treatment of pneumococcal pneumosepsis.


Assuntos
Pneumonia Pneumocócica , Sepse , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão , Macrófagos/metabolismo , Camundongos , Pneumonia Pneumocócica/metabolismo , Piroptose , Streptococcus pneumoniae
5.
Anesthesiology ; 136(2): 293-313, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965287

RESUMO

BACKGROUND: Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS: Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS: High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/µl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/µl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS: In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Imunidade Celular/fisiologia , Mitocôndrias/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/terapia , Respiração Artificial/efeitos adversos , Animais , Masculino , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Pneumonia Pneumocócica/metabolismo , Estudos Prospectivos , Coelhos , Distribuição Aleatória
6.
FASEB J ; 35(11): e21935, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34591327

RESUMO

Inosine monophosphate (IMP) is the intracellular precursor for both adenosine monophosphate and guanosine monophosphate and thus plays a central role in intracellular purine metabolism. IMP can also serve as an extracellular signaling molecule, and can regulate diverse processes such as taste sensation, neutrophil function, and ischemia-reperfusion injury. How IMP regulates inflammation induced by bacterial products or bacteria is unknown. In this study, we demonstrate that IMP suppressed tumor necrosis factor (TNF)-α production and augmented IL-10 production in endotoxemic mice. IMP exerted its effects through metabolism to inosine, as IMP only suppressed TNF-α following its CD73-mediated degradation to inosine in lipopolysaccharide-activated macrophages. Studies with gene targeted mice and pharmacological antagonism indicated that A2A , A2B, and A3 adenosine receptors are not required for the inosine suppression of TNF-α production. The inosine suppression of TNF-α production did not require its metabolism to hypoxanthine through purine nucleoside phosphorylase or its uptake into cells through concentrative nucleoside transporters indicating a role for alternative metabolic/uptake pathways. Inosine augmented IL-ß production by macrophages in which inflammasome was activated by lipopolysaccharide and ATP. In contrast to its effects in endotoxemia, IMP failed to affect the inflammatory response to abdominal sepsis and pneumonia. We conclude that extracellular IMP and inosine differentially regulate the inflammatory response.


Assuntos
Endotoxemia/metabolismo , Inosina Monofosfato/metabolismo , Inosina/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Interleucina-10/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/microbiologia , Quinazolinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
7.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600743

RESUMO

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Assuntos
Receptor de Proteína C Endotelial/deficiência , Pulmão/metabolismo , Pleura/metabolismo , Derrame Pleural/metabolismo , Pleurisia/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Carga Bacteriana , Células Cultivadas , Modelos Animais de Doenças , Receptor de Proteína C Endotelial/genética , Feminino , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pleura/microbiologia , Pleura/patologia , Derrame Pleural/microbiologia , Derrame Pleural/patologia , Derrame Pleural/fisiopatologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/fisiopatologia
8.
Sci Rep ; 11(1): 2432, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510372

RESUMO

Bacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP ß1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP ß1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP ß1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP ß1, -DQ α1, -DQ ß1, -DR α, and -DR ß1. Neutrophil elastase also cleaved HLA-DP ß1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Elastase de Leucócito/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteólise , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/fisiologia , Células THP-1 , Traqueia/microbiologia
9.
J Mol Biol ; 433(2): 166723, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33242497

RESUMO

Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Streptococcus pneumoniae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Ligação de Hidrogênio , Cinética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleosídeos/química , Nucleosídeos/metabolismo , Fagocitose , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Ligação Proteica , Conformação Proteica , Streptococcus pneumoniae/imunologia , Relação Estrutura-Atividade
10.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290273

RESUMO

Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERß, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcus pneumoniae-induce PNA-ALI, a salutary effect that required Treg ERß expression. E2/ERß was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERß Tregs.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Pneumonia Pneumocócica/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Transferência Adotiva , Animais , Modelos Animais de Doenças , Estradiol/metabolismo , Receptor beta de Estrogênio/deficiência , Receptor beta de Estrogênio/genética , Feminino , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Fatores Sexuais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
11.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020213

RESUMO

Streptococcus pneumoniae is a major causative bacterium of community-acquired pneumonia. Dendritic cell-associated C-type lectin-2 (dectin-2), one of the C-type lectin receptors (CLRs), was previously reported to play a pivotal role in host defense against pneumococcal infection through regulating phagocytosis by neutrophils while not being involved in neutrophil accumulation. In the present study, to elucidate the possible contribution of other CLRs to neutrophil accumulation, we examined the role of caspase recruitment domain-containing protein 9 (CARD9), a common adaptor molecule for signal transduction triggered by CLRs, in neutrophilic inflammatory response against pneumococcal infection. Wild-type (WT), CARD9 knockout (KO), and dectin-2 KO mice were infected intratracheally with pneumococcus, and the infected lungs were histopathologically analyzed to assess neutrophil accumulation at 24 h postinfection. Bronchoalveolar lavage fluids (BALFs) were collected at the same time point to count the neutrophils and assess the production of inflammatory cytokines and chemokines. Neutrophil accumulation was significantly decreased in CARD9 KO mice, but not in dectin-2 KO mice. Tumor necrosis factor alpha (TNF-α), keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-2 (MIP-2) production in BALFs were also attenuated in CARD9 KO mice, but not in dectin-2 KO mice. Production of TNF-α and KC by alveolar macrophages stimulated with pneumococcal culture supernatants was significantly attenuated in CARD9 KO mice, but not in dectin-2 KO mice, compared to that in each group's respective control mice. In addition, pneumococcus-infected CARD9 KO mice showed larger bacterial burdens in the lungs than did WT mice. These data indicate that CARD9 is required for neutrophil migration after pneumococcal infection, as well as inflammatory cytokine and chemokine production by alveolar macrophages, and suggest that a CLR distinct from dectin-2 may be involved in this response.


Assuntos
Candidíase Mucocutânea Crônica/complicações , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Pneumonia Pneumocócica/etiologia , Streptococcus pneumoniae , Animais , Biópsia , Quimiocinas/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunoglobulina G/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia
12.
FASEB J ; 34(12): 16432-16448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095949

RESUMO

Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.


Assuntos
Brônquios/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Influenza A/patogenicidade , Infecções Pneumocócicas/metabolismo , Pneumonia Pneumocócica/metabolismo , Brônquios/microbiologia , Brônquios/virologia , Linhagem Celular , Coinfecção/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/virologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/virologia , Streptococcus pneumoniae/patogenicidade
13.
Proc Natl Acad Sci U S A ; 117(3): 1543-1551, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900362

RESUMO

The circadian clock regulates many aspects of immunity. Bacterial infections are affected by time of day, but the mechanisms involved remain undefined. Here we show that loss of the core clock protein BMAL1 in macrophages confers protection against pneumococcal pneumonia. Infected mice show both reduced weight loss and lower bacterial burden in circulating blood. In vivo studies of macrophage phagocytosis reveal increased bacterial ingestion following Bmal1 deletion, which was also seen in vitro. BMAL1-/- macrophages exhibited marked differences in actin cytoskeletal organization, a phosphoproteome enriched for cytoskeletal changes, with reduced phosphocofilin and increased active RhoA. Further analysis of the BMAL1-/- macrophages identified altered cell morphology and increased motility. Mechanistically, BMAL1 regulated a network of cell movement genes, 148 of which were within 100 kb of high-confidence BMAL1 binding sites. Links to RhoA function were identified, with 29 genes impacting RhoA expression or activation. RhoA inhibition restored the phagocytic phenotype to that seen in control macrophages. In summary, we identify a surprising gain of antibacterial function due to loss of BMAL1 in macrophages, associated with a RhoA-dependent cytoskeletal change, an increase in cell motility, and gain of phagocytic function.


Assuntos
Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/genética , Movimento Celular/efeitos dos fármacos , Resistência à Doença/genética , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pneumonia Pneumocócica/metabolismo , Actinas/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Citoesqueleto , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Streptococcus pneumoniae/patogenicidade , Proteína rhoA de Ligação ao GTP/metabolismo
14.
FASEB J ; 34(2): 2749-2764, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908042

RESUMO

Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.


Assuntos
Anexina A1/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Receptores de Formil Peptídeo/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Receptores de Lipoxinas/metabolismo , Streptococcus pneumoniae/metabolismo
15.
Sci Rep ; 9(1): 19839, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882693

RESUMO

Streptococcus pneumonia, one of the major colonizers in nasopharyngeal adenoids, has been the predominant pathogen causing acute otitis media (AOM) in children. Recent evidence suggests an association between IL-17A-mediated immune response and the clearance of pneumococcal colonization in nasopharyngeal adenoids. Here, we evaluated the expressions of IL-17A and associated genes in hypertrophic adenoid tissues of children with sleep-disordered breathing (SDB) and otitis media with effusion (OME) and their association with pneumococcal carriage. Sixty-six pediatric patients with adenoid hypertrophy were enrolled. During adenoidectomy, nasopharyngeal swab and adenoid tissues were used to determine pneumococcal carriage and IL-17A expression. Our results revealed significantly higher levels of IL-17A and IL-17A:IL-10 mRNA in the SDB patients positive for nasopharyngeal pneumococcal carriage than those negative. However, these differences were not significant in the OME group. These results suggested, in OME patients, prolonged or chronic pneumococcal carriage may occur because of insufficient IL-17A-mediated mucosal clearance, and could further lead to AOM and OME development.


Assuntos
Tonsila Faríngea/metabolismo , Interleucina-17/genética , Nasofaringe/metabolismo , Otite Média com Derrame/genética , Pneumonia Pneumocócica/genética , Síndromes da Apneia do Sono/genética , Tonsila Faríngea/microbiologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Hipertrofia , Imuno-Histoquímica , Interleucina-17/metabolismo , Masculino , Nasofaringe/microbiologia , Nasofaringe/patologia , Otite Média com Derrame/metabolismo , Otite Média com Derrame/microbiologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndromes da Apneia do Sono/metabolismo , Síndromes da Apneia do Sono/microbiologia , Streptococcus pneumoniae/fisiologia
16.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481409

RESUMO

Neutrophils contribute to lung injury in acute pneumococcal pneumonia. The interleukin 17 receptor E (IL-17RE) is the functional receptor for the epithelial-derived cytokine IL-17C, which is known to mediate innate immune functions. The aim of this study was to investigate the contribution of IL-17RE/IL-17C to pulmonary inflammation in a mouse model of acute Streptococcus pneumoniae pneumonia. Numbers of neutrophils and the expression levels of the cytokine granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor alpha (TNF-α) were decreased in lungs of IL-17RE-deficient (Il-17re-/- ) mice infected with S. pneumoniae Numbers of alveolar macrophages rapidly declined in both wild-type (WT) and Il-17re-/- mice and recovered 72 h after infection. There were no clear differences in the elimination of bacteria and numbers of blood granulocytes between infected WT and Il-17re-/- mice. The fractions of granulocyte-monocyte progenitors (GMPs) were significantly reduced in infected Il-17re-/- mice. Numbers of neutrophils were significantly reduced in lungs of mice deficient for IL-17C 24 h after infection with S. pneumoniae These data indicate that the IL-17C/IL-17RE axis promotes the recruitment of neutrophils without affecting the recovery of alveolar macrophages in the acute phase of S. pneumoniae lung infection.


Assuntos
Interleucina-17/metabolismo , Neutrófilos/fisiologia , Pneumonia Pneumocócica/metabolismo , Receptores de Interleucina-17/metabolismo , Animais , Diferenciação Celular , Feminino , Granulócitos , Interleucina-17/genética , Camundongos , Camundongos Knockout , Pneumonia Pneumocócica/microbiologia , Receptores de Interleucina-17/genética , Streptococcus pneumoniae
17.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451621

RESUMO

Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide, and interleukin-22 (IL-22) helps contain pneumococcal burden in lungs and extrapulmonary tissues. Administration of IL-22 increases hepatic complement 3 and complement deposition on bacteria and improves phagocytosis by neutrophils. The effects of IL-22 can be tempered by a secreted natural antagonist, known as IL-22 binding protein (IL-22BP), encoded by Il22ra2 To date, the degree to which IL-22BP controls IL-22 in pulmonary infection is not well defined. Here, we show that Il22ra2 inhibits IL-22 during S. pneumoniae lung infection and that Il22ra2 deficiency favors downregulation of oxidative phosphorylation (OXPHOS) genes in an IL-22-dependent manner. Il22ra2-/- mice are more resistant to S. pneumoniae infection, have increased IL-22 in lung tissues, and sustain longer survival upon infection than control mice. Transcriptome sequencing (RNA-seq) analysis of infected Il22ra2-/- mouse lungs revealed downregulation of genes involved in OXPHOS. Downregulation of this metabolic process is necessary for increased glycolysis, a crucial step for transitioning to a proinflammatory phenotype, in particular macrophages and dendritic cells (DCs). Accordingly, we saw that macrophages from Il22ra2-/- mice displayed reduced OXPHOS gene expression upon infection with S. pneumoniae, changes that were IL-22 dependent. Furthermore, we showed that macrophages express IL-22 receptor subunit alpha-1 (IL-22Ra1) during pneumococcal infection and that Il22ra2-/- macrophages rely more on the glycolytic pathway than wild-type (WT) controls. Together, these data indicate that IL-22BP deficiency enhances IL-22 signaling in the lung, thus contributing to resistance to pneumococcal pneumonia by downregulating OXPHOS genes and increasing glycolysis in macrophages.


Assuntos
Interleucinas/metabolismo , Pneumonia Pneumocócica/metabolismo , Receptores de Interleucina/metabolismo , Animais , Linhagem Celular , Suscetibilidade a Doenças , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Interleucinas/genética , Antígenos Comuns de Leucócito , Pulmão/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Fosforilação , Pneumonia Pneumocócica/imunologia , Receptores de Interleucina/genética , Streptococcus pneumoniae , Interleucina 22
18.
Artigo em Inglês | MEDLINE | ID: mdl-29868491

RESUMO

Group A streptococcus (GAS), a common pathogen, is able to escape host immune attack and thus survive for longer periods of time. One of the mechanisms used by GAS is the upregulated expression of immunosuppressive molecules, which leads to a reduction in the production of inflammatory cytokines in immune cells. In the present study, we found that macrophages produced lower levels of proinflammatory cytokines (IL-1ß, TNF-α, IL-6) when challenged with GAS than they did when challenged with Escherichia coli (E. coli). Simultaneously, in a mouse model of lung infection, GAS appeared to induce a weaker inflammatory response compared to E. coli. Our data also indicated that the expression of the A20 transcriptional regulator was higher in GAS-infected macrophages than that in macrophages infected with E. coli, and that high expression of A20 correlated with a reduction in the production of TRAF6. SiRNA targeting of A20 led to the increased production of TRAF6, IL-1ß, TNF-α, and IL-6, suggesting that A20 inhibits synthesis of these key proinflammatory cytokines. We also investigated the pathway underlying A20 production and found that the synthesis of A20 depends on My88, and to a lower extent on TNFR1. Finally, we showed a significant reduction in the expression of A20 in macrophages stimulated by M protein-mutant GAS, however, a speB-GAS mutant, which is unable to degrade M protein, induced a greater level of A20 production than wild type GAS. Collectively, our data suggested that M protein of GAS was responsible for inducing A20 expression in macrophages, which in turn down-regulates the inflammatory cytokine response in order to facilitate GAS in evading immune surveillance and thus prolong survival in the host.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Pulmão/imunologia , Macrófagos/imunologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pyogenes/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/imunologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/microbiologia , Células RAW 264.7 , Streptococcus pyogenes/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L25-L40, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29543040

RESUMO

Evidence is accumulating that exposure to cigarette smoke (CS) increases the risk of developing acute respiratory distress syndrome (ARDS). Streptococcus pneumoniae is the most common cause of bacterial pneumonia, which in turn is the leading cause of ARDS. Chronic smokers have increased rates of pneumococcal colonization and develop more severe pneumococcal pneumonia than nonsmokers; yet mechanistic connections between CS exposure, bacterial pneumonia, and ARDS pathogenesis remain relatively unexplored. We exposed mice to 3 wk of moderate whole body CS or air, followed by intranasal inoculation with an invasive serotype of S. pneumoniae. CS exposure alone caused no detectable lung injury or bronchoalveolar lavage (BAL) inflammation. During pneumococcal infection, CS-exposed mice had greater survival than air-exposed mice, in association with reduced systemic spread of bacteria from the lungs. However, when mice were treated with antibiotics after infection to improve clinical relevance, the survival benefit was lost, and CS-exposed mice had more pulmonary edema, increased numbers of BAL monocytes, and elevated monocyte and lymphocyte chemokines. CS-exposed antibiotic-treated mice also had higher serum surfactant protein D and angiopoietin-2, consistent with more severe lung epithelial and endothelial injury. The results indicate that acute CS exposure enhances the recruitment of immune cells to the lung during bacterial pneumonia, an effect that may provide microbiological benefit but simultaneously exposes the mice to more severe inflammatory lung injury. The inclusion of antibiotic treatment in preclinical studies of acute lung injury in bacterial pneumonia may enhance clinical relevance, particularly for future studies of current or emerging tobacco products.


Assuntos
Lesão Pulmonar Aguda , Antibacterianos/farmacologia , Pneumonia Bacteriana , Pneumonia Pneumocócica , Streptococcus pneumoniae/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Feminino , Camundongos , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia
20.
Cell Host Microbe ; 21(5): 551-552, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28494232

RESUMO

Some pathogens block generation of reactive oxygen species to evade neutrophil killing, but how that is accomplished is poorly understood. In this issue of Cell Host & Microbe, Vareechon et al. (2017) describe ADP-ribosylation of Ras as a strategy to inhibit assembly of neutrophil NADPH oxidase.


Assuntos
Genes ras/fisiologia , Pseudomonas/imunologia , Espécies Reativas de Oxigênio/imunologia , ADP-Ribosilação , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA